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Abstract

In this paper we introduce Causeway, operating sys-
tem support facilitating the development of meta-
applications, like priority scheduling and performance
debugging, that control and analyze the execution of dis-
tributed programs. Meta-applications use Causeway to
inject and access metadata on application execution paths
to implement their specific goals. Causeway has two
components: (1) interfaces to inject and access metadata
and (2) mechanisms to automate propagation of meta-
data. Using Causeway we could rapidly implement a
distributed priority scheduling system where priority of a
task is injected and propagated as metadata, and accessed
to implement global priority scheduling. This required
writing only about 150 lines of code on top of Causeway.
With this system we obtained global priority scheduling
on an implementation of the TPC-W benchmark.

1 Introduction

In this paper we introduce Causeway, operating sys-
tem support facilitating the development ofmeta-
applications that control and analyze the execution
of distributed programs. Priority scheduling and
performance debugging are examples of such meta-
applications. A meta-application can span across the
application and the operating system (kernel and li-
braries). Meta-applications use Causeway to inject and
accessmetadataon application execution paths to im-
plement their specific goals, e.g., scheduling or debug-
ging. Causeway performs automatic propagation of in-
jected metadata along application execution paths en-
abling the meta-application to access metadata from any-
where along those paths.

Causeway has two components: (1) interfaces forac-
tors to inject and access metadata and (2) mechanisms
to automate propagation of metadata to and from actors
acrosschannels. An actor is an execution context; it can
be a process, a thread (in a multithreaded program) or an

event handler (in an event-driven program), whether ex-
ecuting in user or kernel mode. Application execution is
performed by one or more actors. An actor may commu-
nicate with other actors during an execution. A channel is
defined as the means of communication between two (or
more) actors. Metadata is arbitrary data that is distinct
from application data but is propagated alongside appli-
cation data through the execution paths of the distributed
program. Causeway interfaces can be called from both
the application and the operating system. Causeway au-
tomatically propagates metadata between actors across
channels without the need for any application modifica-
tion.
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Figure 1: Propagation of Metadata Between Two Actors
Across a Channel

At an abstract level, Causeway works as follows.
Metadata is associated with an actor when that actor per-
forms injection. Later, when the actor writes application
data to a channel, its metadata is associated with the ap-
plication data written. On a subsequent read from the
channel by either the same or a different actor, the meta-
data is propagated to the actor performing the read. Fig-
ure 1 illustrates the concept of propagation of metadata
between two actors across a channel.

The complete set of channel types are: (1) sockets, (2)
pipes, (3) files, and (4) shared memory. Causeway prop-
agates metadata along a channel on read and write opera-
tions by an actor. Some of these channel types are visible
to the operating system (kernel and libraries) while oth-



ers are not. Pipes, sockets and files are system visible
whereas shared memory is not. Further, some channel
types are persistent, e.g., files, while others, like shared
memory, are short-lived. Causeway currently propagates
metadata across socket and pipe channels. As ongoing
work we are adding support in Causeway for file and
shared memory channels.

There are quite a few challenges in the design of
Causeway. First, when metadata is propagated to an ac-
tor, a decision needs to be made about what to do with the
existing metadata on the actor. It is possible that the in-
coming metadata pertains to a new request to the system:
in this case the incoming metadata needs to be assigned
to the actor which loses its existing metadata. Alterna-
tively, the incoming metadata may be associated with the
same request as being currently executed by the actor but
carry a different value: in this case some composition of
the incoming metadata and the existing metadata needs
to be applied to the actor. Second, on a read on a channel,
different pieces of data may be associated with different
metadata. Again, a decision is required about what meta-
data to propagate to the actor. Finally, handling channels
invisible to the system, viz., shared memory, is a chal-
lenge in itself. We address these issues in Sections 4
and 6.

We have implemented Causeway in the FreeBSD
operating system kernel, thelibpthread and the
libevent [8] libraries. Causeway, thus, achieves au-
tomatic propagation of metadata without the need for ap-
plication modification.

Using Causeway we could rapidly implement a dis-
tributed priority scheduling system where priority of a
task is injected and propagated as metadata, and accessed
to implement global priority scheduling. This required
writing only about 150 lines of code on top of Causeway.
With this system we obtained global priority schedul-
ing on an implementation of the TPC-W [10] benchmark
used as a test distributed program. This distributed pro-
gram includes a Web server, an application server and a
database, all running on different machines. Each request
for service is assigned a priority. This priority is then
passed as metadata which followsall actors performing
the execution for this request in the Web server, appli-
cation server and the database. No modification of the
TPC-W benchmark, other than selective injection of pri-
ority, was required.

Causeway is not the first system to advocate the prop-
agation of metadata along request execution paths in
distributed systems. Earlier work in Domain and Type
Enforcement (DTE) in Unix systems [2] and Stateful
Distributed Interposition (SDI) [9] employ metadata or
context propagating mechanisms similar to Causeway.
While DTE propagates the type of data written by a send-
ing process and the domain of the sending process for

interprocess communication to implement security poli-
cies, Causeway extends this mechanism to propagate ar-
bitrary types of metadata across different kinds of chan-
nels for a variety of meta-applications. The work closest
to Causeway is SDI [9] which also provides metadata or
context propagating mechanism for multitiered servers.
Causeway differs from SDI in two aspects: first, Cause-
way propagates the value of the metadata across channels
and not its reference as in SDI, and, second, we want
to extend Causeway to handle shared memory channels.
Shared memory channels occur frequently in many pro-
grams, e.g., Apache and MySQL which are used exten-
sively to build distributed applications.

There have been customized solutions to build some
meta-applications as follows. Aguilera et al. [1] infer
causal paths from message traces to locate nodes caus-
ing performance bottlenecks. The use of request tag-
ging has been utilized to determine faults in Internet ser-
vices [4]. The resulting Pinpoint system uses instrumen-
tation of the J2EE platform to pass on request identifiers
among the different components of the system. These
meta-applications, and many more, can be implemented
on top of Causeway.

Magpie [3, 5] represents a different approach to the
analysis of distributed programs. Magpie logs events,
and extracts events belonging to a particular request exe-
cution by performing temporal joins over this log. These
joins are based on application-specific schemas, which
may require considerable expertise and knowledge about
the application. Magpie and request identification using
Causeway present an interesting set of tradeoffs. Mag-
pie does not require kernel or library modifications, and
leverages event logging facilities already present in Win-
dows. In contrast, Causeway accepts the premise of such
modifications, and as a result avoids the need for detailed
knowledge about the application.

With Causeway users can implement tasks like prior-
ity scheduling and performance debugging of distributed
programs. Such users are different from the class of op-
erating systems developers and application developers.
Meta-application developers use the interfaces exported
by Causeway to implement the desired meta-application
requiring little knowledge of the application or the op-
erating system. By separating development of meta-
applications from applications, Causeway parallels the
concept of Aspect-Oriented Programming [7] which al-
lows developers to dynamically modify static application
to achieve secondary goals without modifying the origi-
nal static model.

The rest of this paper is organized as follows. We jus-
tify the need for a framework like Causeway in Section 2.
We give a detailed specification of metadata in Section 3.
Section 4 presents a design overview for Causeway. We
give demonstration of Causeway’s use in Section 5. On-



going and future work is outlined in Section 6. We con-
clude in Section 7.

2 Need for a Framework

In this section we motivate why the operating system
should support metadata injection, access, and propaga-
tion. In other words, we answer the question — “why
not build the support into applications”.

First, we note that the use of metadata is significantly
different than the (application) data. Hence, from a soft-
ware engineering viewpoint, there is a logical separation
between how data and metadata are handled.

Second, propagating metadata at application level only
will involve augmenting applications and application-
level inter-process communication protocols. This ap-
proach has its own pitfalls. Consider a multi-tiered server
for web services. Let us assume, an application-specific
HTTP header is defined to propagate metadata to a web
server. But not all applications use the same protocol.
For instance, the web server may need to communicate
to a database server. In this case, the database server
does not understand HTTP. To propagate metadata to the
database server, then, the communication protocol be-
tween the web server and the database server needs to
be augmented as well. In essence, by this approach all
possible application-level communication protocols will
require augmentation — a tedious solution. By making
the propagation of metadata a system-level function, it
becomes independent of the application-level communi-
cation protocol being used.

Finally, in a distributed program, it is possible that
some individual components are unaware about the pres-
ence of metadata or ignore it. Consider a 3-tier system,
where the middle tier application is unaware of metadata.
The front and the back-end tiers may still, however, need
to access metadata. In this scenario, operating system
support for automatic metadata propagation is required
in the middle tier even though the middle tier application
may remain ignorant to metadata.

3 Metadata

Metadata in Causeway is a five-tuple of(identifier, type,
value, propagation bit mask, merge routine identifier).
On injection, a metadata object is created and assigned
an immutable, system-wide unique identifier. Type and
value are self-explanatory. Meta-applications can define
new metadata types, if required. The propagation bit
mask contains a flag per channel type signifying whether
this metadata object is propagated across channels of
that type or not. The merge routine identifier specifies
which merge routineshould be invoked, when required.
A merge routine takes two or more metadata objects as
input and combines them to produce a single metadata

object. Causeway implements frequently used merge
routines likemin, max, concat, etc. Other merge
routines can be implemented in Causeway, if required.
A merge routine is invoked on the incoming metadata
and the existing metadata of an actor when they have the
same identifier but differ in value.

4 Causeway Design

Causeway has two components: (1) interfaces to inject
and access metadata and (2) mechanisms to automate
propagation of metadata.

4.1 Interfaces

Meta-applications can interact with Causeway in two
ways — through an interface by which actors can in-
ject and access metadata and through a callback inter-
face under which Causeway calls handlers registered by
the meta-application.

Actor Interface Causeway provides interfaces for in-
jection, inspection, modification and removal of meta-
data by actors. These interfaces may be called from user-
level or kernel-level by an actor, which could be a pro-
cess, a thread or an event-handler.

Causeway defines the following interface functions
to be called by an actor:cwa type query retrieves
the collection of metadata types that are associated with
the actor;cwa data lookup retrieves any metadata
of the given type that is associated with the actor;
cwa data insert associates the given metadata with
the actor, overwriting any prior metadata of that type; and
cwa data remove disassociates any metadata of the
given type from the actor. Since all metadata are actor-
private synchronization of metadata access interfaces is
not required.

Callback Interface Using Causeway’s callback inter-
face the meta-application can register atransfer-point
callback method. A transfer point is a point where data is
read from or written to a channel by an actor. At a trans-
fer point Causeway determines if the type of the meta-
data being passed has a callback method registered. If a
callback method exists, it is invoked with the metadata as
argument. The callback method reads and possibly mod-
ifies the metadata and passes it back to the transfer point.
The callback method can call arbitrary operating system
code, e.g., to change the priorities of actors.

4.2 Automatic Propagation of Metadata

When an actor performs a write on a channel, the ac-
tor’s metadata is associated with the data written into the
channel. On a subsequent read on the channel by an ac-
tor, metadata is propagated from the data and assigned
to the actor. First, we describe the rules of metadata as-
signment to an actor. Then we describe the propagation



mechanism across each of the channel types.

4.2.1 Assigning Metadata to an Actor

There are two ways metadata can be assigned to an actor
- injection and propagation across a channel. On injec-
tion, an actor loses any existing metadata and the injected
metadata is assigned to it. On propagation, two cases are
possible. First, the actor does not have any existing meta-
data, or the identifier of its existing metadata does not
match the identifier of the metadata propagated. In this
case the actor loses its existing metadata, if any, and the
propagated metadata is assigned to it. Second, the iden-
tifier of the actor’s existing metadata matches that of the
propagated one but the metadata values are different (no
action is required if the values match). In this case the
merge routine, specified in the metadata, is invoked on
the two metadata, and the result is assigned to the actor.

4.2.2 Propagation across Channels

Now we describe the propagation mechanism across
each of the channel types. We emphasize that the rules
described in Section 4.2.1 are applied to assign metadata
to an actor after propagation across a channel. Cause-
way currently implements metadata propagation across
sockets and pipes.

Sockets and Pipes Causeway handles sockets and
pipes similarly. When an actor writes to a socket (or a
pipe), Causeway associates metadata from the actor to
the data written. On subsequent read from the socket by
another (or the same) actor, metadata is propagated from
the data to the actor.

The above applies forLOCAL sockets only. For
INTERNET sockets, data is encapsulated in IP packets
for send and receive across sockets. Causeway encapsu-
lates metadata, in addition to data, in the IP packets. For
IPv4, Causeway encapsulates metadata in the IP header
as IP options. In particular, Causeway defines a new IP
option type, populates the IP header with the option type,
option length, and option payload. At the receiving side,
the metadata, if any, is extracted from the IP options.
Since IP options can be a maximum of 40 bytes only,
with 1 byte each for options type and options length,
Causeway can transfer at most 38 bytes of metadata via
this mechanism. For most practical purposes, this has
proven sufficient. This limitation is an artifact of Cause-
way’s implementation and not its design. A general pur-
pose tunneling protocol could be used to overcome this
limitation, if required. For IPv6, Causeway uses the des-
tination options in the IP header which does not have any
size limitation. Further details about that are outside the
scope of this paper.

The following case presents a challenge to the above
design. Consider a scenario where multiple pieces of
data are ready to be read from a socket (or pipe), and

at least one piece has a metadata identifier different than
rest of the above. Then a decision needs to be made about
what metadata is to be propagated to the actor reading
from the socket (or pipe). Causeway resolves this situa-
tion as follows. The pieces of data ready on the socket
are read in aFIFO manner. Causeway returns from the
read just before the first piece having metadata identi-
fier different than the earlier pieces. So, all the pieces of
data read by the actor are guaranteed to have the same
metadata identifier. The merge routine is then applied
on these metadata, if their values differ, and the result is
propagated to the actor. In our implementation of Cause-
way on FreeBSD, we associate metadata withmbufs on
send and receive operations onsockets.

5 Using Causeway

Meta-applications to control and analyze the execution of
distributed programs can be built easily using Causeway.
We illustrate two such meta-applications here: a multi-
tier priority scheduling system and a distributed profiler.

5.1 Multi-tier Priority Scheduling System

Using Causeway we could rapidly implement a multi-
tier priority scheduling system, controlling the order in
which requests sent to a multi-tiered, web-based applica-
tion server are executed. Under this system, the applica-
tion injects priority as metadata, Causeway automatically
propagates the priority metadata to all the tiers, and the
meta-application uses the priority metadata to enforce
priority scheduling on each tier. The meta-application is
automatically invoked on each tier through Causeway’s
callback mechanism.

The implementation of this system on top of Cause-
way required writing only about 150 lines of code. We
tested this system with an implementation of the TPC-
W benchmark [10]. No modifications were made to the
TPC-W code, other than selective injection of priority.
We subjected the TPC-W system to a background work-
load and a foreground test load. The background work-
load was injected with metadata signifying default pri-
ority. The foreground load was injected with metadata
for default priority in one case, and high priority for an-
other. Response time measurement for the foreground
load showed one to two orders of magnitude of improve-
ment when using high priority.

5.2 Distributed Profiler

In this section we present the design for a distributed
profiler that we are developing using Causeway. A dis-
tributed application has multiple components executing
in different processes. Furthermore, these different pro-
cesses may be executing on multiple machines. While
it is possible to profile the components in isolation, it is
hard to collate the profile information for different com-



ponents to form a single, global profile. We intend to
achieve this with a distributed profiler: we will pass con-
text information as metadata on remote procedure calls
(RPC) between the application components using Cause-
way, and then using this context information we will
stitch together the profile information for the components
to a generate a single, global profile.

6 Future Work

In this section we describe the design of Causeway to
propagate metadata across file and shared memory chan-
nels. As ongoing work, this design is being implemented
in Causeway. As future work, we intend to extend the
design of Causeway to handle parallel computation paths
and address security concerns. Finally, we wish to quan-
tify the overhead of using Causeway.

6.1 Files

When an actor writes to a file, Causeway assigns the
metadata from the actor to the range of bytes written. On
a read operation, two cases are possible: (1) All the bytes
read are associated with the same metadata - The meta-
data is propagated to the actor in this case, (2) At least
one byte has associated metadata different than the rest
- In this case the merge routine, specified in the meta-
data, is applied on the different metadata, and the result
is propagated to the actor.

6.2 Shared Memory

Producer-consumer is a popular model of shared mem-
ory usage. This model is used, by applications like
Apache and MySQL. At an abstract level, the model
works as follows. Producers and consumers share a
buffer or queue of objects. A producer creates an ob-
ject, acquires a lock to enter the critical section, adds
the object to the shared buffer or queue, and releases
the lock. A consumer acquires a lock to enter the crit-
ical section, retrieves and removes an object from the
shared buffer or queue, releases the lock, and then ac-
cesses the retrieved object. The use of system-supported
synchronization primitives, likepthread mutex or
pthread rwlock, can make producer-consumercom-
munication through shared memory visible to Causeway.

We note that the producer accesses the created object
just beforethe lock operation and in the critical section,
while the consumer accesses the retrieved object in the
critical section and justafter the unlockoperation. We
are investigating ways to identify this pattern and insert
(in the source or precompiled binary) calls to save meta-
data from the producer and calls to retrieve metadata in
the consumer. The transformed producer code will do the
following: create the object, save the producer’s meta-
data and associate it with the created object; then enter
the critical section as in the unmodified program. After

the critical section, the transformed consumer code will
do the following: access the retrieved object and retrieve
the metadata associated with the retrieved object.

6.3 Execution Path Fork and Join

Causeway needs to handle execution pathforks andjoins
caused by parallel computation paths. In the common
case, an actor writes to a channel and then reads from the
same channel, waiting for a response. However, some-
times, an actor may write to multiple channels without
waiting for the individual responses. As an example, a
web server may send queries to multiple nodes in a repli-
cated database system and then wait for their individual
responses. Each of these writes constitutes a fork in the
execution path. When the response corresponding to a
fork arrives, it is termed a join. In the above example,
the response from a database server constitutes a join.
As future work, we intend to extend the design of Cause-
way to identify and handle such forks and joins in the
execution paths.

6.4 Security Concerns

Like SDI [9] we argue that the issue of illegal network
access modifying metadata in IP packets should be ad-
dressed by using IPSec [6]. In order to prevent the ille-
gal modification of the metadata by the application, we
intend to incorporate a secure signing mechanism like
MD5 as a part of the metadata for propagation across the
user-kernel boundary.

7 Conclusions

The contributions of this paper are the following. We
have designed Causeway, operating system support for
facilitating development of meta-applications, like pri-
ority scheduling and performance debugging, to con-
trol and analyze the execution of distributed programs.
Causeway provides interfaces for metadata injection and
access and performs automatic propagation of meta-
data in distributed programs. Propagated metadata can
be accessed and used to implement the desired ser-
vice in the system. We have implemented Causeway in
the FreeBSD operating system, thelibpthread and
the libevent libraries. We have demonstrated the
use of Causeway by implementing a multi-tier priority
scheduling system and using it to achieve global priority
scheduling on an implementation of the TPC-W bench-
mark [10].
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