Causeway: Operating System Support For Controlling And Andyzing The
Execution Of Distributed Programs

Anupam Chanda, Khaled EImeleegy, and Alan L. Cox
Department of Computer Science
Rice University, Houston, Texas 77005, USA
{anupant, kdi aa, al c}@s.rice. edu

Willy Zwaenepoel
School of Computer and Communication Sciences
EPFL, Lausanne, Switzerland
wi | ly. zwaenepoel @pfl.ch

Abstract event handler (in an event-driven program), whether ex-
))) ecuting in user or kernel mode. Application execution is

In this paper we introduce Causeway, operating SySperformed by one or more actors. An actor may commu-
tem support facilitating the development of meta- hicate with other actors during an execution. A channelis
applications, like priority scheduling and performance jefined as the means of communication between two (or
debugging, that control and analyze the execution of diSpyqre) actors. Metadata is arbitrary data that is distinct
tributed programs. Meta-applications use Causeway 19, application data but is propagated alongside appli-
injectand access metadata on application execution pathsion data through the execution paths of the distributed
to implement their specific goals. Causeway has tWo,oqram. Causeway interfaces can be called from both
components: (1).|nterfaces to inject and access metadajg application and the operating system. Causeway au-
and (2) mechanisms to automate propagation of metgymatically propagates metadata between actors across

data. Using Causeway we could rapidly implement acpannels without the need for any application modifica-
distributed priority scheduling system where priority of a 45,

task is injected and propagated as metadata, and accessed

to implement global priority scheduling. This required METADATA
writing only about 150 lines of code on top of Causeway.
With this system we obtained global priority scheduling —
on an implementation of the TPC-W benchmark. 5 DATA 5 5
WRITE READ
CHANNEL

1 Introduction
In this paper we introduce Causeway, operating sys- \CTORS/

tem support facilitating the development oheta-

applications that control and analyze the execution Figure 1: Propagation of Metadata Between Two Actors
of distributed programs. Priority scheduling and Across a Channel

performance debugging are examples of such meta-

applications. A meta-application can span across the At an abstract level, Causeway works as follows.
application and the operating system (kernel and li-Metadata is associated with an actor when that actor per-
braries). Meta-applications use Causeway to inject andorms injection. Later, when the actor writes application
accesgnetadataon application execution paths to im- data to a channel, its metadata is associated with the ap-
plement their specific goals, e.g., scheduling or debugplication data written. On a subsequent read from the
ging. Causeway performs automatic propagation of inchannel by either the same or a different actor, the meta-
jected metadata along application execution paths erdata is propagated to the actor performing the read. Fig-
abling the meta-application to access metadata from anyure 1 illustrates the concept of propagation of metadata
where along those paths. between two actors across a channel.

Causeway has two components: (1) interfacesfor The complete set of channel types are: (1) sockets, (2)
tors to inject and access metadata and (2) mechanismgipes, (3) files, and (4) shared memory. Causeway prop-
to automate propagation of metadata to and from actoragates metadata along a channel on read and write opera-
acroschannels An actor is an execution context; it can tions by an actor. Some of these channel types are visible
be a process, a thread (in a multithreaded program) or ato the operating system (kernel and libraries) while oth-

ers are not. Pipes, sockets and files are system visibl@terprocess communication to implement security poli-
whereas shared memory is not. Further, some channeles, Causeway extends this mechanism to propagate ar-
types are persistent, e.g., files, while others, like share8itrary types of metadata across different kinds of chan-
memory, are short-lived. Causeway currently propagaterels for a variety of meta-applications. The work closest
metadata across socket and pipe channels. As ongoirtig Causeway is SDI [9] which also provides metadata or
work we are adding support in Causeway for file andcontext propagating mechanism for multitiered servers.
shared memory channels. Causeway differs from SDI in two aspects: first, Cause-
There are quite a few challenges in the design ofway propagatesthe value of the metadata across channels
Causeway. First, when metadata is propagated to an aénd not its reference as in SDI, and, second, we want
tor, a decision needs to be made about what to do with thto extend Causeway to handle shared memory channels.
existing metadata on the actor. It is possible that the inShared memory channels occur frequently in many pro-
coming metadata pertains to a new request to the systergrams, e.g., Apache and MySQL which are used exten-
in this case the incoming metadata needs to be assigneively to build distributed applications.
to the actor which loses its existing metadata. Alterna- There have been customized solutions to build some
tively, the incoming metadata may be associated with theneta-applications as follows. Aguilera et al. [1] infer
same request as being currently executed by the actor botusal paths from message traces to locate nodes caus-
carry a different value: in this case some composition ofing performance bottlenecks. The use of request tag-
the incoming metadata and the existing metadata needsing has been utilized to determine faults in Internet ser-
to be applied to the actor. Second, on aread on a channelices [4]. The resulting Pinpoint system uses instrumen-
different pieces of data may be associated with differentation of the J2EE platform to pass on request identifiers
metadata. Again, a decision is required about what metaamong the different components of the system. These
data to propagate to the actor. Finally, handling channelmeta-applications, and many more, can be implemented
invisible to the system, viz., shared memory, is a chal-on top of Causeway.
lenge in itself. We address these issues in Sections 4 Magpie [3, 5] represents a different approach to the
and 6. analysis of distributed programs. Magpie logs events,
We have implemented Causeway in the FreeBSDand extracts events belonging to a particular request exe-
operating system kernel, thlei bpt hr ead and the cution by performing temporal joins over this log. These
I i bevent [8] libraries. Causeway, thus, achieves au-joins are based on application-specific schemas, which
tomatic propagation of metadata without the need for apmay require considerable expertise and knowledge about
plication modification. the application. Magpie and request identification using
Using Causeway we could rapidly implement a dis- Causeway present an interesting set of tradeoffs. Mag-
tributed priority scheduling system where priority of a pie does not require kernel or library modifications, and
task is injected and propagated as metadata, and accesdederages event logging facilities already present in Win-
to implement global priority scheduling. This required dows. In contrast, Causeway accepts the premise of such
writing only about 150 lines of code on top of Causeway.modifications, and as a result avoids the need for detailed
With this system we obtained global priority schedul- knowledge about the application.
ing on an implementation of the TPC-W [10] benchmark With Causeway users can implement tasks like prior-
used as a test distributed program. This distributed proity scheduling and performance debugging of distributed
gram includes a Web server, an application server and programs. Such users are different from the class of op-
database, all running on different machines. Each requestrating systems developers and application developers.
for service is assigned a priority. This priority is then Meta-application developers use the interfaces exported
passed as metadata which folloals actors performing by Causeway to implement the desired meta-application
the execution for this request in the Web server, applitequiring little knowledge of the application or the op-
cation server and the database. No modification of therating system. By separating development of meta-
TPC-W benchmark, other than selective injection of pri-applications from applications, Causeway parallels the
ority, was required. concept of Aspect-Oriented Programming [7] which al-
Causeway is not the first system to advocate the proplows developers to dynamically modify static application
agation of metadata along request execution paths itp achieve secondary goals without modifying the origi-
distributed systems. Earlier work in Domain and Typenal static model.
Enforcement (DTE) in Unix systems [2] and Stateful The rest of this paper is organized as follows. We jus-
Distributed Interposition (SDI) [9] employ metadata or tify the need for a framework like Causeway in Section 2.
context propagating mechanisms similar to CausewayWe give a detailed specification of metadata in Section 3.
While DTE propagates the type of data written by a send-Section 4 presents a design overview for Causeway. We
ing process and the domain of the sending process fagive demonstration of Causeway'’s use in Section 5. On-

going and future work is outlined in Section 6. We con- object. Causeway implements frequently used merge

clude in Section 7. routines likemi n, max, concat, etc. Other merge
routines can be implemented in Causeway, if required.
2 Need for a Framework A merge routine is invoked on the incoming metadata

In thi . tivate why th i " and the existing metadata of an actor when they have the
n this section we motivate why the operating systeMg, e iqentifier but differ in value.

should support metadata injection, access, and propaga-
tion. I_n other Words,_ we anS_Ner_the question — “Why4 Causeway Design
not build the support into applications”.
First, we note that the use of metadata is significantlyCauseway has two components: (1) interfaces to inject
different than the (application) data. Hence, from a soft-and access metadata and (2) mechanisms to automate
ware engineering viewpoint, there is a logical separatiorPropagation of metadata.
between how data a.nd metadata are haqdlgd. 41 Interfaces
Second, propagating metadata at application level only o)))
will involve augmenting applications and application- Meta-applications can interact with Causeway in two
level inter-process communication protocols. This ap-Ways — through an interface by which actors can in-
proach has its own pitfalls. Consider a multi-tiered served€ct and access metadata and through a callback inter-
for web services. Let us assume, an application-specifif2ce under which Causeway calls handlers registered by
HTTP header is defined to propagate metadata to a wethe meta-application.

server. But not all applications use the same protocolactor Interface Causeway provides interfaces for in-
For instance, the web server may need to communicatiction, inspection, modification and removal of meta-
to a database server. In this case, the database serv@ita by actors. These interfaces may be called from user-

does not understand HTTP. To propagate metadata to thevel or kernel-level by an actor, which could be a pro-
database server, then, the communication protocol besess, a thread or an event-handler.

tween the web server and the database server needs tOCauseway defines the f0||owing interface functions

be augmented as well. In essence, by this approach al§ pe called by an actorcwa_t ype_query retrieves
possible application-level communication protocols will the collection of metadata types that are associated with
require augmentation — a tedious solution. By makingthe actor;cwa.dat a_l ookup retrieves any metadata
the propagation of metadata a system-level function, ibf the given type that is associated with the actor;
becomes independent of the application-level communizwa_dat a_i nsert associates the given metadata with
cation protocol being used. the actor, overwriting any prior metadata of that type; and
Finally, in a distributed program, it is possible that cwa_dat a_r enove disassociates any metadata of the
some individual components are unaware about the pregjiven type from the actor. Since all metadata are actor-

ence of metadata or ignore it. Consider a 3-tier systemprivate synchronization of metadata access interfaces is
where the middle tier application is unaware of metadatanot required.

The front and the back-end tiers may still, however, nee allback Interface Using Causewav’s callback inter-
to access metadata. In this scenario, operating syste 9 y

support for automatic metadata propagation is require ca(iliJ;ZE rrr?eet:]at;gpglf;:rt_:gg rca(;nrteig'Zte;??:\fﬁ;zoégia i
in the middle tier even though the middle tier application : P P

- read from or written to a channel by an actor. At a trans-

may remain ignorant to metadata.) . .

fer point Causeway determines if the type of the meta-

data being passed has a callback method registered. If a
3 Metadata callback method exists, it is invoked with the metadata as
Metadata in Causeway is a five-tuple(@entifier, type, argument. The callback method reads and possibly mod-
value, propagation bit mask, merge routine identifier) ifies the metadata and passes it back to the transfer point.
On injection, a metadata object is created and assignetihe callback method can call arbitrary operating system
an immutable, system-wide unique identifier. Type andcode, e.g., to change the priorities of actors.
value are self-explanatory. Meta-applications can define
new metadata types, if required. The propagation bif1
mask contains a flag per channel type signifying whetheiWhen an actor performs a write on a channel, the ac-
this metadata object is propagated across channels ¢dr's metadata is associated with the data written into the
that type or not. The merge routine identifier specifieschannel. On a subsequent read on the channel by an ac-
which merge routineshould be invoked, when required. tor, metadata is propagated from the data and assigned
A merge routine takes two or more metadata objects ato the actor. First, we describe the rules of metadata as-
input and combines them to produce a single metadataignment to an actor. Then we describe the propagation

.2 Automatic Propagation of Metadata

mechanism across each of the channel types. at least one piece has a metadata identifier different than
rest of the above. Then a decision needs to be made about
what metadata is to be propagated to the actor reading
There are two ways metadata can be assigned to an actfsom the socket (or pipe). Causeway resolves this situa-

- injection and propagation across a channel. On injection as follows. The pieces of data ready on the socket
tion, an actor loses any existing metadata and the injectedre read in &l FOmanner. Causeway returns from the
metadata is assigned to it. On propagation, two cases aread just before the first piece having metadata identi-
possible. First, the actor does not have any existing metédfier different than the earlier pieces. So, all the pieces of
data, or the identifier of its existing metadata does nodata read by the actor are guaranteed to have the same
match the identifier of the metadata propagated. In thisnetadata identifier. The merge routine is then applied
case the actor loses its existing metadata, if any, and then these metadata, if their values differ, and the result is
propagated metadata is assigned to it. Second, the idepropagated to the actor. In our implementation of Cause-
tifier of the actor’s existing metadata matches that of thevay on FreeBSD, we associate metadata witlkif s on
propagated one but the metadata values are different (n&end and receive operations®ncket s.

action is required if the values match). In this case the

merge routine, specified in the metadata, is invoked ofd Using Causeway

the two metadata, and the result is assigned to the acto

4.2.1 Assigning Metadata to an Actor

rMeta-applicationsto control and analyze the execution of
4.2.2 Propagation across Channels distributed programs can be built easily using Causeway.
We illustrate two such meta-applications here: a multi-

Now we describe the propagation mechanism acros S : - :
each of the channel types. We emphasize that the ruleﬁser priority scheduling system and a distributed profiler.

described in Section 4.2.1 are applied to assign metadatal Multi-tier Priority Scheduling System

to an actor after propagation across a channel. Caus‘f]sing Causeway we could rapidly implement a multi-

way currently_|mplements metadata propagation acroSger priority scheduling system, controlling the order in
sockets and pipes. which requests sent to a multi-tiered, web-based applica-
Sockets and Pipes Causeway handles sockets andtion server are executed. Under this system, the applica-
pipes similarly. When an actor writes to a socket (or ation injects priority as metadata, Causeway automatically
pipe), Causeway associates metadata from the actor foropagates the priority metadata to all the tiers, and the
the data written. On subsequent read from the socket byneta-application uses the priority metadata to enforce
another (or the same) actor, metadata is propagated fropriority scheduling on each tier. The meta-application is
the data to the actor. automatically invoked on each tier through Causeway’s
The above applies foL OCAL sockets only. For callback mechanism.
| NTERNET sockets, data is encapsulated in IP packets The implementation of this system on top of Cause-
for send and receive across sockets. Causeway encapsmay required writing only about 150 lines of code. We
lates metadata, in addition to data, in the IP packets. Foested this system with an implementation of the TPC-
IPv4, Causeway encapsulates metadata in the IP header benchmark [10]. No modifications were made to the
as IP options. In particular, Causeway defines a new IFPC-W code, other than selective injection of priority.
option type, populates the IP header with the option typeWe subjected the TPC-W system to a background work-
option length, and option payload. At the receiving side,load and a foreground test load. The background work-
the metadata, if any, is extracted from the IP optionsload was injected with metadata signifying default pri-
Since IP options can be a maximum of 40 bytes only,ority. The foreground load was injected with metadata
with 1 byte each for options type and options length,for default priority in one case, and high priority for an-
Causeway can transfer at most 38 bytes of metadata viather. Response time measurement for the foreground
this mechanism. For most practical purposes, this hakad showed one to two orders of magnitude of improve-
proven sufficient. This limitation is an artifact of Cause- ment when using high priority.
way’s implementation and not its design. A general pur- . _
pose tunneling protocol could be used to overcome thi®-2 Distributed Profiler
limitation, if required. For IPv6, Causeway uses the desdn this section we present the design for a distributed
tination options in the IP header which does not have anyrofiler that we are developing using Causeway. A dis-
size limitation. Further details about that are outside thdributed application has multiple components executing
scope of this paper. in different processes. Furthermore, these different pro-
The following case presents a challenge to the aboveesses may be executing on multiple machines. While
design. Consider a scenario where multiple pieces oit is possible to profile the components in isolation, it is
data are ready to be read from a socket (or pipe), antiard to collate the profile information for different com-

ponents to form a single, global profile. We intend to the critical section, the transformed consumer code will
achieve this with a distributed profiler: we will pass con- do the following: access the retrieved object and retrieve
text information as metadata on remote procedure callthe metadata associated with the retrieved object.
(RPC) between the application components using Cause- .)

way, and then using this context information we will -3 Execution Path Fork and Join

stitch together the profile information for the componentscauseway needs to handle execution fatks andjoins

to a generate a single, global profile. caused by parallel computation paths. In the common
case, an actor writes to a channel and then reads from the
6 Future Work same channel, waiting for a response. However, some-

In this section we describe the design of Causeway tdimes, an actor may write to multiple channels without
propagate metadata across file and shared memory cha@aiting for the individual responses. As an example, a
nels. As ongoing work, this design is being implementedVeb server may send queries to multiple nodes in a repli-
in Causeway. As future work, we intend to extend thecated database system and then wait for their individual
design of Causeway to handle parallel computation path§eSPOnses. Each of these writes constitutes a fork in the
and address security concerns. Finally, we wish to quan€xecution path. When the response corresponding to a

tify the overhead of using Causeway. fork arrives, it is termed a join. In the above example,
_ the response from a database server constitutes a join.
6.1 Files As future work, we intend to extend the design of Cause-

When an actor writes to a file, Causeway assigns th&vay to identify and handle such forks and joins in the

metadata from the actor to the range of bytes written. Orgxecution paths.

aread operation, two cases are possible: (1) All the byte .

read arepassociated with the sa&e metad(a'za - The rzetg'-d' Security Concerns

data is propagated to the actor in this case, (2) At leastike SDI [9] we argue that the issue of illegal network

one byte has associated metadata different than the reatcess modifying metadata in IP packets should be ad-

- In this case the merge routine, specified in the metadressed by using IPSec [6]. In order to prevent the ille-

data, is applied on the different metadata, and the resutjal modification of the metadata by the application, we

is propagated to the actor. intend to incorporate a secure signing mechanism like
MDS5 as a part of the metadata for propagation across the

6.2 Shared Memory user-kerne?l boundary. Props9

Producer-consumer is a popular model of shared mem-

ory usage. This model is used, by applications like7 Conclusions

Apache and MySQL. At an abstract level, the model

works as follows. Producers and consumers share AN€ contributions of this paper are the following. We
buffer or queue of objects. A producer creates an obl1ave designed Causeway, operating system support for
ject, acquires a lock to enter the critical section, adddacilitating development of meta-applications, like pri-
the object to the shared buffer or queue, and release¥ty scheduling and performance debugging, to con-
the lock. A consumer acquires a lock to enter the crit-T0! and analyze the execution of distributed programs.
ical section, retrieves and removes an object from thd-auseway provides interfaces for metadata injection and

shared buffer or queue, releases the lock, and then a@cCess and performs automatic propagation of meta-

cesses the retrieved object. The use of system-support&it@ in distributed programs. Propagated metadata can
synchronization primitives, likept hr ead_mut ex or be accessed and used to implement the desired ser-

pt hr eadr wl ock, can make producer—consumercom—Vice in the system. We have implemented Causeway in

munication through shared memory visible to CausewaytN® FreeBSD operating system, thebpt hr ead and
libraries. We have demonstrated the

We note that the producer accesses the created obje%le i bevent ; . o L
just beforethe lock operation and in the critical section, US€ Of Causeway by implementing a multi-tier priority

while the consumer accesses the retrieved object in thecheduling system and using it to achieve global priority
critical section and jusafter the unlockoperation. we ~Scheduling on an implementation of the TPC-W bench-

are investigating ways to identify this pattern and insertmark [10].

in the source or precompiled binary) calls to save meta;

(precomp) cal ‘References

data from the producer and calls to retrieve metadata i

the consumer. The transformed producer code will do the[t] M. K. ﬁ_guilﬁra, J.c. rl}/loguly J. L. \t/JViener, F. Reyn_glds, and
FR, ;) _ A. Muthitacharoen. Performance Debugging for DistribuSgs-

fOIIOWIng' creat_e th? Ot.)JeCt’ save the prqduc.ers meta tems of Black Boxes. IRroceedings of the 19th ACM Symposium

data and associate it with the created object; then enter o, operating Systems Principles (SOSP q®)ges 74-89, Oct.

the critical section as in the unmodified program. After 2003.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and\S.
Haghighat. A Domain and Type Enforcement UNIX Prototype.
In Fifth USENIX UNIX Security Symposiudune 1995.

P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. \gditag-
pie for Request Extraction and Workload Modelling. @$Dl,
pages 259-272, Dec. 2004.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. BreweinP
point: Problem Determination in Large, Dynamic Internet-Se
vices. InProceedings of the International Conference on De-
pendable Systems and Networks (IPDS Trapkpes 595-604,
June 2002.

R. Isaacs, P. Barham, J. Bulpin, R. Mortier, and D. Naraya
Request extraction in Magpie: events, schemas and temporal
joins. In SIGOPS EW'04: ACM SIGOPS European Workshop
Sept. 2004.

S. Kent and R. Atkinson. Security Architecture for theeimet
Protocol. INIETF RFC 2401 1998.

ONJava.com. Introduction to Aspect-Oriented PrograngmAt
http://www.onjava.com/pub/a/onjava/2004/01/14/atmlh

N. Provos. Libevent - an event notification library.
Version 0.7c is available from the author's web site,
http://www.monkey.orgtprovos/libevent/, Oct. 2003. Libevent

is also included in recent releases of the NetBSD and OpenBSD
operating systems.

J. Reumann and K. G. Shin. Stateful Distributed Inteitims.
ACM Transactions on Computer Syste2(1):1-48, Feb. 2004.

T. P. P. C. (TPC). TPC BENCHMARK W (web commerce). At
http://www.tpc.org/tpcw/, Feb. 2002.

