Overclocking the Yahoo! CDN for Faster Web Page Loads

Mohammad Al-Faré® Khaled Elmeleegy Benjamin Reetl Igor Gashinsky

malfares@cs.ucsd.edu

{khaled, breed, igor}@yahoo-inc.c

om

! Department of Computer Science and Engineerirfdrahoo! Research °Yahoo! Inc.

University of California, San Diego

Abstract

Fast-loading web pages are key for a positive user experiduia-
fortunately, a large number of users suffer from page loaesi of
many seconds, especially for pages with many embeddedtsbjec
Most of this time is spent fetching the page and its objects twe
Internet.

This paper investigates the impact of optimizations thatrove
the delivery of content from edge servers at the Yahoo! Gunte
Delivery Network (CDN) to the end users. To this end, we an-
alyze packet traces of 12.3M TCP connections originatignfr
users across the world and terminating at the Yahoo! CDN. Us-
ing these traces, we characterize key user-connectioncsatrthe
network, transport, and the application layers. We obséigh
Round Trip Times (RTTs) and in ated number of round trips per
page download (RTT multipliers). Due to inef ciencies in P&
slow start and the HTTP protocol, we found several oppatiesito
reduce the RTT multiplier, e.g. increasing TCP's Initial@estion
Window (ICW), using TCP Appropriate Byte Counting (ABC)cn
using HTTP pipelining.

Using live workloads, we experimentally study the micrceeets
of these optimizations on network connectivity, e.g. padkes
rate. To evaluate the macro effects of these optimizationthe
overall page load time, we use realistic synthetic work$oada
closed laboratory environment. We nd that compounding HTT
pipelining with increasing the ICW size can lead to reductio
page load times by up to 80%. We also nd that no one con gu-
ration ts all users, e.g. increasing the TCP ICW to a cerie
may help some users while hurting others.

Categories and Subject Descriptors

C.4 [Performance of Systemp measurement techniques, perfor-
mance attributes; C.2.pmputer-Communication Networks):
Network Operations-retwork monitoring, public networks

General Terms
Measurement, Experimentation, Performance

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for pro t or commercial advantagel #mat copies
bear this notice and the full citation on the rst page. Togotherwise, to
republish, to post on servers or to redistribute to listguies prior speci ¢
permission and/or a fee.

IMC'11, November 2—4, 2011, Berlin, Germany.

Copyright 2011 ACM 978-1-4503-1013-0/11/11 ...$10.00.

Keywords

Content Delivery Networks, Trafc Analysis, Web Page Load
Time, TCP tuning

1. INTRODUCTION

For web sites to maintain high user satisfaction, their wesipes
need to load quickly. However, web pages are becoming mare co
tent rich over the past few years. They include many embedded
images, scripts, and style sheets. Consequently, pagetitoad
are getting higher. As we will see in Sectfon 4]1.2, manysisan
experience tens of seconds of load time for popular web péges
Yahoo!'s front page.

Our measurements and previous research show that viraially
of this time is spent in the network stack downloading the pade
and its embedded objecfs [14]20, 25]. Two main factors tmrter
to the long download time. The rstis the network RTT from the
user to the web server. Second, a page download typicalgstak
tens of round trips to download the web page data and all its em
bedded objects. The number of round trips involved is caR&d
multiplier.

Long network RTTs can be due to a combination of long Internet
routes, route miscon gurations, and long queuing delaysuaters
along the packets' path. To alleviate this problem, CDNsd&e
ployed across the globe by companies like Akamai, Facebdok,
crosoft, Google, and Yahoo! These CDNSs bring content claser
users across the world, hence reducing their network RTdsv-H
ever, this study and previous work by Krishnanal. [16] have
shown that even with globally deployed CDNs, many users-expe
rience hundreds of milliseconds RTTs. To alleviate this\HRy T
problem, Krishnaret al. proposed a toolWhyHigh that attempts
to identify routing miscon gurations leading to in ated tveork
RTTs. This helps x these miscon gurations and reduce rotnil
times.

In ated RTT multipliers are mainly due to inef ciencies dag
TCP slow start and in the HTTP protocol. TCP slow start probes
the available link capacity by exponentially growing thansfer
rate per RTT until a packet is lost (or the slow-start thréshe
reached). This probing is fairly conservative, as it stémsn a
modest ICW, with a default value of three in most networksnéég
it wastes many network round trips before the full availat-
work bandwidth is utilized. Similarly, HTTP is used inefamntly
in practice as it requests a single object at a time wastingta n
work round trip per object. For a page with tens of small endleeld
objects, this is very wasteful.

Two key optimizations were proposed by the IETF and indus-
try [Z)[I1]: First, TCP should start probing from a larger 1Gie.

Dukkipati et al. [11] argue for using an ICW of 10 segments. Us-
ing traf c measurements from Google's users, they argue ttia
would reduce object load time with virtually no downside.cSe
ond, TCP should open up the congestion window size at a higher
rate per round trip. TCP slow start increases the congestion
dow by one for every acknowledgment received. Howeveryaela
acknowledgments, which are pervasively deployed in theriet,
make the receiver send an acknowledgment for every othé&epac
received. This causes TCP congestion window to increasddny a
tor of 1.5 instead of 2 per network round trip during slowrstao
remedy this problem, ABQ[3]5], was introduced to incredse t
window based on the number of bytes acknowledged instedatof t
number of acknowledgments received.

HTTP pipelining [12] was introduced to optimize HTTP down-
loads reducing the number of round trips. It allows for sagdi
HTTP requests for new objects, while responses from eawier

quests have not yet been recieved. As seen in Figure 1, HTTP

pipelining saves RTTs reducing overall web page load tima: U
fortunately, HTTP pipelining is not available by defaultrmajor
web browsers. For example, Internet Explorer, the dominagtit
browser, does not supportﬂ.And while Firefox supports it, it is
disabled by default.

This paper is concerned with the delivery of content fromesdg
servers from the Yahoo! CDN to the users. To this end, we cblle
packet traces of 12.3 million TCP connections from usersaf Y
hoo! across the world. Using these traces, we present aegtird
cross-layer study of different factors affecting web paggalitimes.
Then, we study different cross-layer optimizations andk timéer-
play aimed at reducing the RTT multiplier. Speci cally, wiigy
varying the ICW size, TCP ABC, and HTTP pipelining using live
and realistically-inspired synthetic workloads.

The contributions of this paper are three fold:

1. Characterize the connections from users' to the YahoadNCD
web servers at the IP, TCP, and HTTP layers.

. Study TCP optimizations to reduce web page load times —
most notably changing the ICW. We nd that many users
bene t signi cantly (up to 38%) from increasing the ICW
size. However, in contrast to previous work, we show that no
one size for the ICW ts all the users as increasing the ICW
for some users can increase packet loss hurting the overall
page load time. Moreover, we show that, in some cases,
increasing the ICW size can be unfair to other ows in the
network. We believe that currently this result is espegiall
important given the efforts at IETF to increase TCP's ICW
size to the xed size of 10[10].

. Study and quantify the performance gains from HTTP
pipelining using realistic workloads. In addition, qudyti
the gains when HTTP pipelining is used in conjunction with
optimum ICW size. These gains can reach 80% reduction in
the page load time.

The rest of this paper is organized as follows. Sedflon 2gntss
the background and previous related work. Sedflon 3 cheniaes
the traf ¢ observed at the Yahoo! CDN. Sectibh 4 presents our
study of different optimizations to reduce the RTT mul&plito
reduce the web page load time. Secfidn 5 discusses our Bading
Sectior § concludes the paper.

1The main reason Microsoft gives is that pipelining is notveni
sally implemented, e.g. head-of-line blocking with buggpxy
servers.

Client Server Client Serve
Open Open
GE) Close
=
Close
Y \/ Y Y
No Pipelining Pipelining

Figure 1: Non pipelined vs. pipelined HTTP connection. The
client arrows indicate GET requests.

2. BACKGROUND AND RELATED WORK

In this section, we explain how content delivery networkskvo
We also present some of the related work aimed at optimizing ¢
tent delivery at CDNs, more speci cally optimizations teethet-
work stack.

2.1 Content Delivery Networks

CDNs are usually built as a network of geographically digers
sites. Each site hosts a cluster of servers caching comdrediv-
ering it to users. The geographical diversity serves twpases.
First, it brings content closer to the users reducing ndtaiency.
Second, it provides redundancy to tolerate failures ofviddial
sites.

In a nutshell, a CDN typically works as shown in Figlre 2. When
the user tries to fetch an object from a particular URL, itt per-
forms a DNS lookup. The DNS server returns the IP address of a
server near the user. The user then contacts the servecliotifet
object. If the server has the object locally, it serves ithe tiser
from its cache. Otherwise, the server contacts a back-enarse
usually over a fast private network, to fetch the object ite@ache
and then serve it to the user.

There are multiple CDNs deployed worldwide. Some compa-
nies run and use their own private CDNs like Google, Facepook
and Yahoo!. Others use third party CDNs like Akaniail[19] and
CoralCDN [13].

In this paper, we study the delivery aspect of the Yahoo! CDN.
At a high level, the Yahoo! CDN operates as described above.

2.2 Round Trip Times

Krishnanet al. [16] studied the network round trip latencies in
the Google CDN. They reported that latencies are generdly h
and that 40% have round trip times higher than 400ms. They ar-
gued that adding more CDN sites is not always the best salutio
as this high latency is sometimes due to queuing delays arithgo
miscon gurations. They then introduced a new tadlhyHigh that
tries to identify pre xes suffering from in ated latencies-inally,
this tool attempts to diagnose the causes for this in atéshiey by
using multiple active measurements, using different tbkésping
andtraceroute and correlating in ated subnet latencies to common
AS paths for example.

In this paper, we also studied round trip latencies, andfalsad
latencies to be high (on the order of a few hundred milliselson
in the developing world). However, the latency distribnsowe
observed were signi cantly lower than those reportedir] [16

2.3 Optimizing the Network Stack

Previous work have argued for increasing TCP's initial vawd
size [7[10, IM]. Dukkipatet al. [I1] recently argued for increas-
ing the window size to 10 segments in order to decrease page lo
time. They argued that this reduces page load time with alistu
no downside. In contrast, although we nd that many usersben
t from larger initial window size in this study, we also obse a
subset of users who suffer due to increased packet loss.

Qiaret al. [23], have studied the Internet backbone traf c and
shown that up to 15% of large- ows already violate the ICWitim
set by the specnfin (4 MSS;max(2 MSS; 4380), which
equals 3 for a Maximum Segment Size (MSS) of 1460) [7]), and
values up to 9KB have been observed in the wild.

Allman [4] studied traf ¢ to and from a single web server. He
characterized different settings of the protocols usedRTdd
HTTP) by this traf c. For example, he studied the deploymeht
TCP features like selective acknowledgments. Like othadiss,
Allman too reported long RTTs for studied connections. Bhigly
is over 10 years old though and only studied 751K connectabas
single web server at a single geographic location. Moreaveike
this paper, Allman only relied on passive measurements &hd d
not try to measure different performance metrics in respdos
changing different protocol settings.

To allow for increasing the ICW while not hurting users with
poor connectivity, ChU[10gt al. argued that users with poor con-
nectivity can can advertise a smaller receive window sikethe-
ory this can x the problem. However, in practice, modifyitige
network stacks of existing users with poor connectivity yoam-
ically detect their network conditions and consequentljsting
their corresponding receive window sizes is challenging.

A different line of research proposed multiplexing severahll
streams on top of TCP to reduce web page load time, e.g. SEDY [2
and Stream Control Transmission Protocoll [24]. Howevethbo
protocols are still experimental and not used at a largeesnahe
web. In contrast, we aim to optimize existing protocols thiace
best possible performance without breaking backward ctibipa
ity.

On the HTTP and application layer front, Leightén][17] advo-
cates several optimizations such as pre-fetching embeziztednt,
pre-caching popular objects at the edge, and using conipnessd
delta-encoding of popular web pages. The argument beirgitha
contrast to a decade ago when the last-mile connection tosthe
was likely the bottleneck, thaiddle-miles capacity growth has not
kept pace and become the new bottleneck, and that thesédqeebn
would all contribute to alleviating web traf ¢ on the backimand
faster page loads.

3. STUDYING YAHOO! CDN TRAFFIC

In this section, we present our study of the traf ¢ charastars
at the Yahoo! CDN edge servers. Speci cally, we wanted to ana
lyze and dissect network connections on multiple levelsisnar
questions as follows:

Routing Layer (IP): What is the distribution of RTTs? Are
some ISPs suffering from exceptionally high RTT to the
nearest CDN node?

BINES
Server

Internet

Edge
CachingEServg
II Backer: B8 3
Servel
Edge
CachingEServ4

Figure 2: An HTTP request to a CDN. First, the DNS resolves
the server's name to a nearby edge server. Then, the client
sends the request to the nearby caching edge server. On a cach
miss, the edge server contacts the back end servers to fetdhet
missing content and then deliver it to the user.

Transport Layer (TCP): What level of packet retransmission
rates do different users experience? What is the distdbuti
of bytes transfered per connection? What is the distributio
of the connection lifetime?

Application Layer (HTTP): How many web objects are
fetched per TCP connection? What is the distribution of the
sizes of objects fetched?

3.1 Methodology

For this study, we used 1-hour lorigpdumptraces collected
from edge servers in the Yahoo! CDN across the world. We se-
lected an edge server at each of the following sites: Chicago-
many, Singapore, and India. These sites were chosen to #pan d
ferent important regions of the world with diverse connactthar-
acteristics. We have veri ed that the traf c characteistiat one
server are representative of its corresponding site. Wethdgd
by collecting traces from different servers at the same aite
comparing their characteristics and verifying they aréuailty the
same. Consequently, we only report results from one semer p
site. These servers run Linux with 2.6 kernels. Moreovegséh
servers were con gured with default kernel settings for TreP
stack. The packet traces were collected at 1 p.m. local tivhigh
previous studies at Yahoo! have shown to be traditionalypbak
load time on these servers. We have also veri ed that traf ather
times of the day has qualitatively similar characteristics

We used a combination of d@€psplit [6] and tcptrace[21] to
analyze every TCP connection we captured (12.3M connexjtion
This provided a detailed report on a multitude of key conioect
characteristics; connection duration, number of bytessfieared,
average roundtrip time estimates, retransmitted pacigts|n ad-
dition, we used the HTTP module toptraceto parse HTTP layer
information such as request arrival, response initiataond com-
pletion timestamps, objects requests and their sizes,Ftmally,
we used Yahoo!'s proprietary internal data sets for geatioos,
connection speeds, and subnet pre xes in conjunction wifbri
mation extracted from the traces to complete this study.

Average RTT to user from CDN node

0.9r
0.8r
c
i)
2 0.7
>S5
L
§ 06
5
e}
S 05fF
K]
s}
2 04f
=
g 03t
3
8] Average
0.2r -——Chicago
p — — — Germany
0.1y India §
?1 — — —Singapore
0 i i i i I |
0 100 200 300 400 500 600

Average RTT (ms)

Figure 3: Average RTT distribution across the four Yahoo!
CDN nodes.

3.2 Results

3.2.1 RTT Characterization

In this section, we study the RTTs experienced by differsetsi
at the four sites.

Figure[3 shows the RTT distributions for the 4 sites. We o t
the distributions for the Chicago and the Germany sites @amsid-
erably better than the Singapore and the India sites. Agtegho
by previous work[[16], we note that RTTs are generally higerev
though CDN nodes are geographically distributed to be ctose
the users. However, in contrast [0 [16], which showed théb 40
the user connections had greater than 400ms RTT, in our @amtkl
only 10% of the user connections experience 400ms or more RTT

Figureg# anfl]5 breakdown the data by the users' source retwor
(this applied clustering is similar to studies such [ag [1fjch
grouped web-clients based on source network, among other fa
tors). They show the median, 10th, and 90th percentiles af&id
packet retransmission rates of users' connections pecs@ubnet
for their corresponding sites. They also show the connectiunts
per subnet. Both gures only show the top-100 subnets wisheet
to the number of connections arriving from each subnet. eSixath
the Germany and the Chicago sites had similar connectivigy-c
acteristics, we chose to show one example of them only — Gbica
Similarly, we chose the Singapore site as an example of ther ot
two sites. In both gures, we note that there is a wide range of
RTTs with some subnets having connections experiencindi-mul
second RTT. Also, we notice a wide range of packet retrarsoms
rates with some subnets having connections experiencieigs®?o
packet retransmission rate.

Figured® shows the RTT distribution of the 8-most frequeaiest
connecting to the Chicago node. We note that even thougle thes
states are very close geographically to Chicago, big fradif their
connections experience hundreds of milliseconds RTT (Gtigd
be due to many reasons including long queueing delays). édenc
one can conclude that adding more CDN sites with geographica
proximity to the users does not guarantee to signi cantiguee

RTT by State
450 T T T : :

400
350
300

250 -

RTT (ms)

200 -

150

100

50 -

Ilinois
Michiganr
Ontariof
Missourir
Ohiof
Kentuckyr

Wisconsinfr- H——6——

Minnesotaf

Figure 6: RTTSs of top 8 most-frequent user origin states. Shw-
ing the median, 10th and 90th percentiles.

their RTTs. This is consistent with observations and caiohs
made by previous work [16].

Figure 7 shows the RTT distribution by connection type. Note
thatBroadbandrepresents connections having high speed, yet their
connection type is unknown. Also, note that mobile conmesti
have signi cantly high RTT. Given the growth of mobile netiks,
improving the RTT multiplier for these connections becommese
pressing so that mobile users can have acceptable web page lo
times.

10th, median, and 90th Percentile of RTTs by Connection Type

4500 T T T T T T T T T T T
x Average
4000f| O Chicago |- T .]
O Germany
3500 F Singapore |- T 4
+ India
3000 [1
g 2500 1 8
= i
£ 20001 : : 11
1500 - : : X 8
1000 1
ol ada | Blg L[
LB BT B wl o | I
RS S O @ S L & O O
o Ko > @ @ N o L
& & * @ 97? N
O O

Figure 7: Median, 10th and 90th percentiles of RTTs, by con-
nection speed.

RTT (ms)

2000

1500

1000

500

Packet Retransmit Rate (%)

Connection Count

w
o

n
=]

[N
o

o

o

IN

0

Top 100 mostlfrequent prefixes, by number of connections, to a node in Chicago
TTEEATTTTT T I TTTT T

I
]
1

iﬂ“ @@%@

ANOFOONOSTINNFNGNRAOANNDIDONODO AN

%)
3

TTTTTTTI T I T T T THAITTTTTTITTT

OHNMILNON0DOHNMNILOONODOANM
AN OO HOMM

x 10"
TTTTTTTTTT T I T I T T

TTTT?T(ﬁ)(f(f(f??(T)?Cf?(T)9)(P(P(P(P?(P‘P9’9’9’(P‘P@‘P?@??‘P@@@@@@@@@@‘P@@@@@@(P<P<P<P‘P<P<P<P<P<P<P®<PQ><P<P<P<P<P<P<P<D<D<D®¢¢®<D®<1><1><D<1><D4>®4>®®g

NN OO TNNFOONDDOHNNFLOONONOHNMFLIONONOHNNIDONDDOHANMFONDDOHANMIOONDNOHNMIOON~ODOHNMY IO VDO HNNIOONONT
AAAAAAAAAATNNNNNNNNNAOOOOMOONNTFTIIIITIT T I ONOOWDOOOOOO QOO OOOOOOONRNNNISNNNNR 000000 000NRIRRRDDOOODT

Figure 4: Median, 10th and 90th percentile RTTs, by user prex, retransmission rate, and connection count to Yahoo! CDN ade in
Chicago.

RTT (ms)

3000

2000

1000

Packet Retransmit Rate (%)

Connection Count

@
o

N
o

n
=]

©

o

EN

N

Top 100 mostlfrequent prefixes, by number of connections, to a node in Singapore
FTTTTTTTTTTT T I T

eSS iESSSETes =

OHNMINONODOANMFLO©
ANMITOONO ! QK

L

ANM OO0 NN OON0DNOANMFLOONDD

x 10"
TTTTTTTTTT T I T I T T

st

DNOHNNTOONDDOANDFOONONOHANNIFOONDNS

AN ONOD OONRNNNNSRR000XEE0000DODPOHONRDODT

Figure 5: Median, 10th and 90th percentile RTTs, by user prex, retransmission rate, and connection count to Yahoo! CDN ade in
Singapore.

Total Outgoing Bytes per TCP Connection TCP Connection Duration

1
0.9r 0.9r
0.8 0.8
5 5
S 07t S 07t
> >
[T [T
5 06 5 06
2 2
5 05f s 051
R] k7]
a a
2 0 g 04|
8 ; 8
2 030 g g2 03t
=3 i = 1
) i Average) - I Average
0.2 -—.— Chicago [0.2p -4 e : -—.— Chicago [
— — - Germany ,;(ﬂ — — — Germany
0.1 India * 0.1 7 India b
— — = Singapore ! — — = Singapore
0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 40
Data (KB) Duration (s)
Figure 8: Bytes transferred per TCP connection. Figure 9: TCP connection duration.

Packet Retransmit Rate from CDN to User

3.2.2 TCP Connection Characterization

In this section we study different characteristics of Us€@P
connections to the Yahoo! CDN.

Figure 8 shows the distribution of the total number of bytess-
ferred to the user per connection. We see that about 90% a&cen
tions download less than 64KB of data. Note that TCP Reno, the
default TCP avor at many operating systems including Linoas
64KB as the default value for TCP's initigisthresh(Slow Start
Threshold). One important consequence of this is that 90% of
the connections, barring loss, would never enter TCP's esiion
avoidance phase and the transfer is done entirely in the stam

0.95
0.9
0.85

0.8

Cumulative Distribution Function

phase. | Average 1
Figure 9 shows the distribution of connection duration atftur == chicago
servers. The different knees in the graphs correspond &etiver's 0.7+ — — ~Germany H
connection timeout setting, which re ects differencestie tocal : o g‘i‘r’]gapore
server con gurations. Note that this does not corresporactive 0.65L i i i i i : :
transfer times; due to the typical size of objects requested the 0 5 10 15 20 25 30 B 40

. . R . X Packet Retransmit Rate (%
small number of objects in a persistent connection, as wesed)

in Section 3.2.3, a typical connection is idle most of theetim

To study packet loss for these connections, we use a medtic th
is measurable from the packet traces we collected, i.ecanstnis-
sion rate. This retransmission rate is an upper bound onablesp

loss rate. Since most users use selective acknowledgnetnis)s- e
missions establish a tight upper bound. Figure 10 showsithe d 3.2.3 HTTP Workload Characterization

Figure 10: Packet retransmission rate.

tribution of packet retransmission rates per connectiootethat, In this section we study different properties of the dowdkx
in India for example, over 70% of the connections see nomstra web objects at the Yahoo! CDN. We can see the distribution of
missions; however, over 17% of connections have retransi@s requested object sizes in Figure 11, which shows around 0% o

above 10%. Similarly, in Figures 4 and 5, we see that some sub- objects are smaller than 25KB (17 segments). Figure 12 shows
nets experience very little retransmissions, while otkaperience the distribution of the number of HTTP requests per conoeadib
substantial retransmission rates that sometimes reach B8%ve see the effect of persistent connections. The mean is ordytab
see in Section 4.1.2, overall page load time is extremelgisen 2.4 requests per connection, with the majority of connestice-

to the packet-loss rate, especially during connectiorpsethere a questing only one object. The reason for having a small numibe
SYN timeout is on the order of seconds. This is compounded for requests per connection in spite of typical web pages haeimgof

networks where RTTSs are signi cantly higher, and it is notoam- objects is because web browsers typically use multiple woant
mon to see total page load time in the range of 10-120 secamds f TCP connections per domain per web page. Putting togetiger Fi
the Yahoo! frontpage. ures 11 and 12 tells us that even when requesting multipkectbj

back-to-back, objects are so small and so few that a typaraiec-

tion does not have enough time to take advantage of openititeup
congestion window. Hence, most of the time is spent rampmg
in slow-start.

In Figure 13, we show the distribution of the time between RTT
requests within the same connection (so-called “thinketymWe
observed that the overall majority, about 80% of back-tokhe-
quests, occur in under one second, and therefore unlikddg the
result of user-clicks, but rather the browser fetching otsje

Linux 2.6 kernels also provide a setting callep_slow_start_-
after_idle which resets the congestion window to the ICW an
moves TCP back to the slow-start phase if there is no datani s
after a given idle period, de ned as one retransmission oue
(RTO). This ison by default. In Figure 13, we also plot the dis-
tribution of the difference between the inter-request teme our
estimate of of the RTO, calculated using the standard Jaocobs-
timator: RTO = RT Taverage +4 RT Tvariance - We nd that
approximately 10% of back-to-back object requests areraggue
by more than one RTO. All these users have to go through sl
start again when downloading the following object spending
pensive network round trips to probe the network for banthwvid
again.

Requested Object Size

Cumulative Distribution Function

Average
-——Chicago
i - — - Germany
0.1 India i
— — —Singapore

40

0 i i i
20 30
Object Size (KB)

50 60

Figure 11: HTTP object size distribution.

Figure 14 shows the distribution of the fraction of the totam-
ber of bytes downloaded via objects with certain sizes. kane
ple, we note that 50% of the total bytes downloaded come from
objects with sizes of 60KB or greater. Looking at Figure 1& w
note that less than 5% of the web objects downloaded have aize

x 10° HTTP Requests per TCP Connection

7 Mean = 2.24 Req 4
90% <=4 Req

Connection Count

Requests

Figure 12: HTTP requests per connection.

Two of these optimizations attempt to reduce the number wfdo
trips during TCP slow start.

The rst optimization is increasing TCP ICW size, which at-
tempts to make TCP slow start begin transmitting data ate rat
closer to the maximum available bandwidth. Hence, it can use
fewer round trips to reach optimal window size that achiebes
maximum transmission rate. Section 4.1 studies the effg#ats-
ing larger ICW sizes.

The second optimization is opening up the congestion winatow
a higher rate during slow start. TCP slow start increasesdhges-
tion window by one for every acknowledgment received. Hasvev
delayed acknowledgments, which is pervasively deployelann-
ternet, makes the receiver send an acknowledgment for etleey
packet received. This causes TCP congestion window toasere
by a factor of 1.5 instead of 2 (as originally intended) parn
trip. To remedy this problem, Appropriate Bytes Countind3@)
was introduced. ABC increases the window based on the number
of bytes acknowledged instead of just counting the numbexrcef
knowledgments received. In Section 4.2, we study the éffEwess
of ABC in reducing page load time.

Finally, in Section 4.3 we study the effectiveness of HTTP
pipelining in reducing the RTT multiplier. Moreover, we dfuits
interplay with increasing the ICW size.

For these different optimizations, we experimentally es#td
their effectiveness using live traf ¢ from real users. Mover, we
used macro benchmarks to evaluate their overall effects em w

60 KB or more. Hence, one can conclude that less than 5% of the Pag€ load times in a closed laboratory environment. In theseo

web objects downloaded account for 50% of the bytes doweldad

4. IMPACT OF DIFFERENT OPTIMIZA-

TIONS ON WEB PAGE LOAD TIME

In Section 3, we saw that RTTs are generally high. They are eve
higher for the up-and-coming segment of users — mobile users
CDN operators, little can be done about this to signi camtiyange
the picture. This means that the bigger opportunity to redhe
web page load time lies in reducing the RTT multiplier. Insthi
section, we study different optimizations to reduce thidtiplier.

benchmarks, we constructed our synthetic workloads based o
measurements from the live traces.

4.1 |Initial Congestion Window (ICW)

We have seen that the vast majority of Yahoo! CDN connections
transfer very few, and very small objects, which means tif@® T
spends most of its time in the slow-start phase. For thisoreas
improving the ef ciency of this phase is crucial. When a ne@H
connection starts probing for available bandwidth, theukii CP
implementation follows RFC 3390 [7], which speci es an ICW o
3 segments for networks having a MSS of 1460 bytes, whicleis th

Think Time and RTO

o o

S 4 9 »

N G ®» O
: N . .

o

o))

a
T

Cumulative Distribution Function

0.6

Think Time a
Think Time - RTO
05 i i i T T

-1 0 1 2 3
Think Time (s)

4 5

Figure 13:

(RTO).

Inter-request time and retransmission timeout

most common MSS. By increasing this ICW, small objects stand
to be transferred in fewer RTTs, which when compounded acros
all objects on a page can cut down the total page load timeé sign
cantly.

Obviously, TCP at the server end would not send more unac-
knowledged data than is allowed by the client's advertiseive
window so as not to over ow the client's receive buffer (The r
ceive window is dynamically allocated on most operatingeays
and advertised throughout the connection). Luckily, onybapop-
erating systems (except Linux which has a much smallervecei
window), the initial receive window is quite large (64KB-&5B),
which would allow for utilizing a larger ICW. According to 11,

Bytes Transferred in Objects Larger than X

1 Average
-— —Chicago
0.9r - — —Germany ||
India

o8k — — —Singapore ||
g
@ 0.7F
=
m
S L
° 0.6
j=2
it
c
§ 0.5
[
o

0.4r

0.3

0.2 i i i i i i i

0 20 40 60 80 100 120 140 160

Object Size (KB)

Figure 14: Percentage of overall bytes transferred acrosslla
objects vs. object size.

that sometimes round trip times vary signi cantly within iagle
connection. Hence, within a single connection an RTT carebe |
than the connection's average RTT.

A potential side effect of increasing the ICW is an increase i
retransmission rates, which we did observe as shown in &igor
Note that while over 70% of connections see no retransnmssio
increasing the ICW from 3 to 16 increases the retransmitfrate
17% to 25% for about 10% of connections. As we will see later in
this section, this will have a signi cant impact on the ovepage
load time as it is highly sensitive to packet-loss.

To study the effects of increasing the ICW size on the taihef t
distribution of object transfer times on a per-subnet hagisshow

more than 90% of user connections have receive windows large in Figure 18 the 80th percentile of the average object tearidhies

enough to utilize an ICW of 10. Hence, increasing TCP's ICW ca
be bene cial.

4.1.1 Evaluation Using Live Traf c

per network pre x. In this gure, for each subnet, 7 data gsin
corresponding to 7 different ICW sizes, are presented. Ppaait
represents the average object transfer time normalizethéoyay-
erage RTT. In the gure, we can observe that most subnets tbene

To test the effects of increasing the ICW size, we chose one of from increasing the ICW and see dramatically lower objemhgr

our CDN sites — Singapore. We chose it due to the diversity of
its connections qualities as seen in Figure 5. There, weddhis
setting and captured traces for each ICW size.

We show in Figure 15 the distribution of object transfer time
normalized by the connection's average RTT. This normttina
allows us to compare transfer times of objects over conoesti
having different RTTs. We observe a reduction of 32% in abjec
transfer time overall at the 80th percentile when going fram
ICW of 3 to 16. However, increasing the ICW sees diminishing
returns beyond that point. Because the effects of incrgatsia
ICW would be more evident during the beginning of a TCP con-
nection, we show in Figure 16 the same metric for tise HTTP
request only, where the improvement is a 38% reduction irsfea

fer times. We also note that for these 20% of the objects, mmaxi
bene tis achieved at an ICW of 16. After that, for ICW of 32,-ob
ject transfer time goes higher. In contrast, other objesat hurt

by larger ICW sizes as seen in Figure 15. Note that we chose the
80thpercentile to show that a signi cant portion of the conneis

in the tail of the distribution can suffer from using larg@W size.

4.1.2 Studying Page Load time

While the previous section studied traces of individual HTT
requests in the wild, we also wanted to capture the effectarsf
ing the TCP ICW size on the overall page load time. Since a full
web page encompasses many objects, any straggling objeot do
load will delay the overall web page download time, espéciél

time. Subsequent HTTP requests bene t less as the TCP window this straggling download is for the HTML le. Studying whole

is usually opened up at the rst request. Note that in both Fig

ures 15 and 16 there is a fraction of the objects that are down-

loaded in under one average RTT. The reason for this is tleat th
average RTT is measured across all round trips measurecein th
lifetime of a connection. By examining the traces, we obsérv

page load times in the wild is very dif cult though. This isdzise
when using packet traces, there is no notion of a full pagendow
load as the objects in a page likely span multiple connesttbat
are dif cult to tie together in a postmortem analysis. Moren
these objects are often at different servers. Hence, no envers

X initewnd 1 * initcewnd 3 initcwnd 5

initcwnd 7

intcwnd 10 O initewnd 16 ¢ initcwnd 32

=
o
|

©
]

x x

X x X X X x X ><><X XXXXXXX s’ XXX
* * % X X X * X

* * *

6001**0**s§** *% % xy ¥ FEQL KNGV e T

o
$68s SR

o
n@

o

Object Trasnfer Time in RTTs
x

olLLI LI IIALI]

& o X & ’ *
50 97000 600706646500500% k56 0706000 o 4

* X%

X X X X X 5
S xk sk x o b o0k e X g@Ex T Tk

oo O ono
L LLbrd
SnmswerooIHitYEERARTNRNKRRERBHEBIBEEESS

Figure 18: The 80th percentile of object transfer times in RTT's per network pre x for the top 100 pre xes, for different IC W sizes.

HTTP Object Trasnfer Time in RTTs from CDN!Singapore
1 T T T T

0.9 e : =
0.8 B
o
ie]
2 071 B
>
L
§ 061 B
5
Ko}
S 05fF / : B
L
a
L 04r B
=l initcwnd 1
S 0.3 initcwnd 3
O initcwnd 5
021 initcwnd 7
initcwnd 10
0.1F initcwnd 16 [1
initcwnd 32
0 i i i I
0 2 4 6 8 10

Figure 15: Overall object transfer time in RTTs.

trace can contain full page downloads. For this reason,stis
tion studies the overall page load time in a controlled emrnent
in the lab using real workloads and realistic network candi.
These simulated network conditions (latency and packstriates)
are based on connections' pro les from previous sectionsese
network conditions represent links' latecy and congestioe to
cross traf ¢ in the internet.

Experimental Setup

We captured a snapshot of the Yahoo! front page, by far thé mos
popular Yahoo! web page, and fairly representative of thasueed
traf c workload. We hosted this page and its resources lgcalch
that all object requests are directed to a local server.

In this setup, the client browser is 3.6.9 Firefox running\iec
OS X 10.5.8. Apart from disabling caching, all other browaed
TCP settings are set to their default. Most notably, delay€Hs
are enabled, and for Firefox, six maximum simultaneous ecnn
tions per domain were used.

HTTP First Object Transfer Time in RTTs from CDN!Singapore

1 T T T T

097 E

0.8r 4
c
o
S 0.7t 1
p=}
(TR
5 06} 1
=
Qo
S 05F B
@
a
.g 0.4 b
% initcwnd 1
S 0.31 initcewnd 3
O initcwnd 5

0.2r initcwnd 7

initcwnd 10
0.1r initcewnd 16
initcwnd 32
0 i i i
0 2 4 6

Figure 16: First-object transfer time in RTTs.

from and to the server. During the experiments, no hardware r
source was saturated, which guaranteed that requestikzgenere
only due induced RTTs and packet loss. The web page had 30
objects distributed across two domains. Thus, we createdRw
aliases at the server representing the two domains.

We had the client repeatedly request the front page. The @mbe
ded links , which represented the static content on the pegeely
images, Javascript, and stylesheets, were replaced to toolR
aliases on the local server. Firefox fetched 30 objectsiliged
across two domains via six concurrent connections per doneai
sulted in an average of 2.5 objects per connection, vergdtothe
average number of objects per connection measured in heesr
shown in Figure 12.

We wanted to measure the total page load time, which we de ne
as the time difference between the rst packet of the rst HI'T
request and the nal ACK of the last object fetched (Page eend
ing time is negligible compared to the download time). We-cap

The server is a guest VM on the same machine, running CentOStured the tcpdump trace of the request at the client, andtegbthe

4.8 release with an updated 2.6.29.5 linux kernel and thehapa
2.0.52 web server. We used tipfw command to setup dummynet
pipes in order to control the perceived RTT and packet-lagssr

page load time between the rst outgoing request and theolast
ject ACK. For every parameter combination we reported, wega
the geometric mean of ve requests for the Yahoo! front page.

Packet Retransmit Rate from CDN!Singapore to User (ABC = 0)
1 T T T T T T T

c
K]
g
S 09r
[T
c
i)
5
e}
S 0.85F
2
a
[}
=
E 0 8 |- ..
s 0. initcwnd 1
5 initcwnd 3
O initcwnd 5
initcwnd 7
0.75 initcwnd 10
initcwnd 16
initcwnd 32
0.7 i i i i i N n
0 5 10 15 20 25 30 35 40
Packet Retransmit Rate (%)
Figure 17: Packet retransmit rate.
Results

Figure 19 shows the total page load time for different valogs
RTT and different values of ICW sizes. We nd that the relativ
reductions in page load times were relatively consistesmging
from 27%-38% when going from an ICW of 3 to 16.

When taking packet loss into account, we show in Figure 20 the
different page load times for different loss rates and chifé ICW
sizes and an RTT of 100ms (the median for Singapore). We nd
that page load times and their variance appear to be supariamd
very sensitive to packet loss; increasing the loss rate fétnto
10%increasegage load time by 63% for an ICW of 3.

However, as seen in Figure 17, increasing the ICW can inereas
packet loss, especially for users with congested linkss Thises
important questions. First, can increasing the ICW hurioierall
page load time for some connections? Second, if the ansviiee to
previous question iges is there a single optimum value for ICW
with respect to page load time that ts all connections?

To study whether there are cases where increasing the |GV ¢
can hurt the overall web page load time, we need to consiags us
that would suffer from increased packet loss due to incngaiiie
ICW. For such users, we need to estimate the increase intdaske
due to the increase in ICW. Then, based on the estimated tpac
loss and the corresponding ICW, we should measure the col
sponding page load time. To this end, we use a user connecl
in the 90% percentile of retransmission rate in Figure 17nasxa
ample. We assume that the measured retransmission rateigeq
packet loss rate. Moreover, we assume that increasing ihesize
for this connection will follow the same increases in resraission
rates observed for the 90th percentile connection in Figdrel he
pairs of the ICW sizes and the corresponding packet loss eate
listed in the rst two columns of Table 1. Finally, we assume:
that this connection has the median RTT for the Singapoes-sit

to signi cant increase of page load time. The same wouldappl
other connections with higher percentile retransmissates. We
see that for the connection in the 90th percentile, it rshéés
from increasing the ICW size up to seven, then by increadieg t
ICW size more, the page load time starts increasing ungélthes
70% more than the minimum load time achieved at an ICW size of
7.

Conversely, looking at the right side of Table 1 (columnsd &8n
with zero packet loss rate (representing the 70th pereeritans-
mission rate of all connections) we see the bene ts fromaasing
the ICW size all the way to 32.

Consequently, one can conclude that no one ICW choice would
bene t all users.

Page Load Time, no packet loss
T T

I initcwnd 1

[Tinitewnd 3 b
[initcwnd 8
I initcwnd 16 7

22

20

181

Total Page Load Time (s)

50 100 200

RTT (ms)

800

1500

Figure 19: Page load time for different ICWs with no loss.

Page Load Time at RTT = 100ms

[
o]

I initcwnd 1
|| C_Jinitewnd 3 |
[N initcwnd 8

I initcwnd 16

=
(o]

P =
N »
T T
i i

Total Page Load Time (s)
[
o
i

0 1 3 5
Loss Rate (%)

10

30

100ms. We measured the page load times using the experiment

described above for every ICW size and its correspondingggtac
loss rate listed at Table 1 and recorded it in the table attiind t
column. We note that for the 90th percentile connectiongh(ve-
spect to packet retransmission rates), increasing the |1@wWead

Figure 20: Page load time for different ICWSs, packet loss rags,
and an RTT of 100ms (median for Singapore).

loss (%) Time (s)| loss (%) Time (s)
1 17 8.56 0.00 2.36
53 18 8.06 0.00 1.87
€5 18 7.29 0.00 1.72
37| 20 632 | 000 156
€10 22 6.92 0.00 1.50
16 25 10.22 0.00 1.32
32 25 10.87 0.00 0.96

Table 1: Yahoo! front page load times for an RTT of 100ms
(median for Singapore) with increasing ICWs and their corre-
sponding loss rates from Figure 17. Right columns show times
with no loss for comparison.

4.1.3 Impact on TCP Fairness

When making changes to TCP, we need to make sure that it re-
mains fair to other TCP ows in the network. In this sectionge w
study the impact of increasing the ICW on TCP fairness.

Increasing TCP ICW size can be unfair to longer ows, sharing
the same bottleneck with short ows. If the network is cortgds
and experiencing signi cant packet loss, increasing th&/I@ill
increase packet loss. This loss may cause the congestiaowin
to shrink by half each round trip until it may eventually reame.
Moreover, the sender could even experience timeouts. Héoce
a long lived ow, the sender can end up sending at a rate lower
than one packet per round trip. Conversely, for a short og, @&
web object download, packet loss will only extend the trassion
by a few round trips and the window size may not drop to one by
then. Hence, thaveragewindow size for the whole transfer can
be signi cantly higher than that for a large transfer.

To demonstrate this point, we conducted the following exper
ment using the setup described at Section 4.1.2. We condyure
the connection between the host machine and the virtual imach
to have the pro le of connections in the 95th percentile frBig-
ure 10, i.e. 100ms of RTT and 25% packet loss rate. Also, we
con gured the ICW to be 32.

First, we raniperf for 5 minutes between the two machines
representing a long ow. This transfer achieved a bandwifth
12.6KB/s — less than 1 segment per RTT (14.3KB/s). For the
second experiment, we downloaded a 48KB (32 segments) fle of
the web server. The measured bandwidth for this secondférans
was 59.1KB/s. Note that as discussed in Section 3.2.3, wtho
48KB is the 95th percentile of downloaded web object sizes, i
the 50th percentile with respect to objects contributingverall
bytes downloaded from the Yahoo! CDN web servers.

Moreover, given that a recent study has shown that 52% of the
internet traf ¢ is web traf ¢ [8] and given that increasinge ICW
can increase packet loss and congestion for users with pooec-
tions as shown in Fig. 17, we conclude that increasing the taw
be more unfair for longer ows for users having poor connatti

Furthermore, one can conclude that increasing the ICW will b
unfair to other short ows that remain using small ICW — e.ge t
current default value of 3.

We conclude that if the TCP standard is changed advocating
larger ICW sizes, this will be unfair to some ows, e.g. longws
having high packet loss.

4.1.4 Discussion

Object Transfer Time in RTTs from CDN!Singapore

1 T T T T
0.9+ fﬂ_;/,__.._.—--——-
08l T 1
S -7
=1 ~
§ 0.7+ v 1
L ,l/
S 06 s 1
S / initcwnd 1, abc 0
g sl // ‘‘‘‘‘ initewnd 1, abc 1 |
g / — — —initewnd 1, abc 2
© oal 7 inittwnd 3, abc 0 ||
.% : A initcwnd 3, abc 1
= / — — —initcwnd 3, abc 2
E 0.3 /,/ initcwnd 7, abc 0 ||
O initcwnd 7, abc 1
0.2 initcewnd 7, abc 2 [
initcwnd 16, abc 0
01F f e initcwnd 16, abc 1 [
— — —initcwnd 16, abc 2
O0 2 4 6 8 10
RTTs

Figure 21: First object transfer time in RTTs, for different
ICW and ABC settings.

users bene t from larger ICW sizes, others may suffer. Moezp
the level of benet or suffering can vary across users adogrd
to their connection quality. Consequently, to achieve pesfor-
mance, different users should have different values of |@pedd-
ing on their connection quality. Hence, we argue that a dyoam
mechanism for con guring the ICW per connection is needed.

4.2 Appropriate Byte Counting (ABC)

As explained above, the deployment @élayed acknowledg-
mentsis pervasive. This leads to the congestion window growing
only by a factor of 1.5 per round trip. ABC mitigates this effey
relying not on ACK arrival but on the number of bytes acknowl-
edged instead to increase the window size. This resultsiodh-
gestion window doubling during slow-start every round @& it
was intended in the original TCP design. Linux allows 3 ABG se
tings: 0 turns off ABC; 1 increments the window by one for each
acknowledged full segment; 2 increments the window by two fo
each acknowledgement received.

4.2.1 Evaluation Using Live Traf c

We varied the ABC settings at the server and show their eiffiect
Figure 21. From these results we nd that turning this featon
has a positive, but limited, effect on object transfer times

4.2.2 Studying Page Load time

To study the effects of TCP ABC on overall web page load time,
we used the same setup used in 4.1.2, except we used an RTT of
100ms and packet loss of zero and measured the page load time
with the ABC optimization turned on and off. As shown in Fig-
ure 22, turning on the ABC optimization has marginal effemts
the overall web page load time. The reason for this is thaethe
fects of ABC will only be noticeable after many round tripsowt
ever, each TCP connection downloads very small numberttf lit
objects, and thus it requires only few packets and few rotipd.t

In this section, we have seen that varying ICW size can have a Hence, there is not much difference in transmission time.

signi cant impact on web page load times. While a big fraotaf

Page Load Time at RTT = 100ms, Loss = 0%

2.5 T
I ABC =0
C—JABC=2
2r 4
© —
[
£
= 15[— b
=}
[
o —
-
(&)
g
o 1r b
<
°
[
0.5F b

3 8
Initial Congestion Window

16

Figure 22: Page load time, for different ICW and ABC settings

4.3 HTTP Pipelining

HTTP pipelining is known to deliver better performance.
this section, we quantify the performance gains from usiig Pl
pipelining using realistic workloads. We also study thesiptay
of HTTP pipelining with lower layers optimizations like ireasing
the ICW size.

HTTP 1.0 only supported downloading a single object per con-
nection. This was inef cient especially for high delay netks as
at least two network round trips are spent per object dovehlea
one for TCP connection establishment and another for dawhalo
ing the object. Moreover, web pages are typically compoded o
multiple small objects, making HTTP 1.0 even less ef cient fa-
tency purposes. Later, HTTP 1.1 supported persistent ctions
spanning multiple object downloads. Furthermore, it aidvior
pipelined HTTP requests over the same TCP connection asishow
in Figure 1.

HTTP pipelining can eliminate multiple expensive network
round trips from a web page download. This is because thatclie
can request multiple objects without waiting for the cop@sding
responses to arrive from the server as seen in Figure 1.

Furthermore, pipelining allows web downloads to utilizeainu
larger TCP ICW sizes leading to faster downloads. As seeeé S
tion 4.1, currently the vast majority of web downloads carnuté
lize TCP ICW larger than 16, even if the web user has more rmitwo
bandwidth available. This is because web browsers dowrdoad
object at a time. As seen in Figure 11, 90% of objects dowrddad
from the Yahoo! CDN are less than 24KB, i.e. they can tina TCP
window of 16. In contrast, with pipelining, multiple objscivith
much larger aggregate sizes are downloaded concurrengliyce
much larger windows can be utilized to reduce the number bf ne
work round trips per download.

Unfortunately, most web browsers do not support HTTP pipeli
ing. For example Internet Explorer, the most popular brovisg
does not support it. Firefox, the second most popular browse
claims to support pipelining but has it switched off by défaids
of today, these two browsers control more than 74% of the web
browser market [1]. We tried to verify the level of pipeligisup-

In

ported by Firefox. We turned pipelining on, con gured Fogfto

use a single connection to download objects from each doraath
then downloaded Yahoo!'s front page. By looking at packatéss
of the download, we realized that only a few object downloaere

pipelined — at most two at time. This is in spite the fact thatweb
page had many objects per domain — up to 15 objects.

A main reason for not supporting pipelining by web browsers
is that some web proxies in the Internet do not support it. How
ever, this problem can be overcome if web browsers are mddi e
to probe a well known web server, at start time, to check i§it i
connected to the server via a faulty proxy or not [18]. If nolfia
proxy is found, pipelining is used, otherwise, it is not.

To study the effectiveness of HTTP pipelining and its intzyp
with TCP ICW size, we evaluated it experimentally. We built a
simple web client that implements HTTP pipelining. It rsbwn-
loads the HTML les. Then, it connects to the domains hostimg
different web page objects. All objects per domain are doaaid
in a pipelined fashion over a single persistent TCP conaectiVe
used the setup in Section 4.1.2 having Yahoo!'s front pageuas
workload. The page objects span multiple domains. The domai
with the maximum aggregate objects' size had 14 objectstotti
aggregate size of 445KB. To allow for a single network rounal t
download, we setthe TCP ICW size at the server to 30060KB).

We also set the web client's receive buffer to 450KB. Undesth
settings, the web page download took 4 round trip times. The
two round trips were to connect to the server then download th
HTML le. Once the HTML le is downloaded, its embedded ob-
jects and their locations are identi ed. The client therrtstpar-
allel connections to all the domains involved, one conecper
domain. For each domain, HTTP pipelining is used to fetch all
the objects in question at this domain. Hence, The two lasido
trips are for connecting to the domain, then fetching alldbects.
This is well below the minimum number of round trips obtaimed
Section 4.1 — 8 round trips.

It is worth mentioning that this minimal number of network
round trips can be also achieved by downloading all the weje pa
objects concurrently each via a separate TCP connectiome@u
web browsers are moving in this direction by having multipeP
connections per domain. This is why we see in Figure 12 that
the average number of object downloads per TCP connection is
2.4. However, this approach has many shortcomings. First, i
limits TCP's ability to control congestion as TCP controlsne
gestion within single connection. So, if many connectiotests
transmitting packets concurrently congestion collapsehzppen,
especially if the connections have high ICW. In this casepase
rate congestion manager [9] may be needed to control caogest
across all the connections, which increases the systemiplex-
ity. Second, having multiple concurrent connections cores
more resources, e.g. the per connection TCP state and the CPU
cycles to maintain this state. That is why most web browseps c
the number of concurrent connections used for objects duawnl
For example, by default, Firefox caps the number of pensisten-
nections per domain to 6 and caps the total number of coramecti
to 30. Web browsers for mobile phones use less concurrent con
nections, e.g. Safari for the iPhone uses 4 connectionsleWwie
load from 6 connections per domain may be not that signi dant
most clients, it is certainly signi cant on web servers. fieetively
means that they have to handle 6 times more connections aind th
corresponding overhead. Finally, using multiple TCP catinas
per application can be unfair to other applications and sutfemt
use a single connection per application.

5. DISCUSSION AND FUTURE WORK

As we have seen in the previous sections tuning the initiat co
gestion window size can have a great impact on web page Io&d ti
especially if used in conjunction with HTTP pipelining. lle&ion

4.3, we have seen that web page load time can bene t from huge

[4] ALLMAN, M. A web server's view of the transport layer.
SIGCOMM Comput. Commun. Rev. @xtober 2000).

[5] ALLMAN, M. TCP Congestion Control with Appropriate
Byte Counting (ABC). RFC 3465, IETF, 2003.

[6] ALLMAN, M. tcpsplit. http://www.icir.org/
mallman/software/tcpsplit/ ,2010.

ICW sizes measured in hundreds of packets. Whereas, we see in[7] ALLMAN, M., FLOYD, S.,AND PARTRIDGE, C. Increasing

Figures 18 and 17 that some users suffer from having mucHemal
ICW sizes.

This wide range of optimal initial TCP window sizes calls for
a dynamic scheme for setting this size per connection as iker
no one size that ts all. The right size depends on the conoect
characteristics, e.g. available bandwidth. This infoioratan be
learned from history of connections coming from the same-oc
tion. TCP Fast Start [22] was proposed to allow a new conoecti
to a host to reuse the state of older connections to the sastelho
also included a mechanism to modify intermediate routeiden-
tify packets from hosts using Fast Start and give these palkeger
priority in the event of congestion. This is to account fog fact
that Fast Start may be using stale cached information. ltésq
tionable though how effective this reuse will be. A typicalsh
does not reconnect to the same other host very frequentlycéje
per-hostcached information is likely to be stale. Moreover, main-
taining persistent state per client may be very expensiva $erver
serving millions of clients. Finally, the requirement foodifying
intermediate routers is a signi cant hurdle to adoption.

We believe that the right approach to setting the initial T@OR-
gestion should rely on previous history as well. However,axan
effective approach tailored for web servers is needed. Aelthis
as future work.

Finally, because of its effectiveness, we advocate suingort
pipelining in web browsers and implementing techniqués, 18],
to overcome faulty proxies. Moreover, it will allow for tadg full
advantage of larger ICW sizes.

6. CONCLUSION

In this paper, we rst characterized the traf c workload eloged
at the edges of Yahoo!'s content distribution network. Wéaeal

that many connections have high RTTs. Some had signi cant re

transmission rates. Based on this, we suggested and ex@|bath
in the wild and in the lab, the effects of several optimizasiat

the TCP and HTTP layers with the goal of reducing overall page

load time. These included a combination of TCP AppropriateeB
Counting, increasing the slow-start ICW, and HTTP pipelini

Overall, we nd that, based on our traf ¢ studies, a majoritfy
users would see signi cant bene t from increasing the ICWp-ta
38% reduction in page load time. However, for clients in ppor
connected networks with high packet loss-rates, perfocmas
likely to suffer when using high ICW sizes. For this reasomr, w
conclude that no “optimal” setting exists that satis eswuaers. We
also found that HTTP pipelining is very effective, espdgidlused
in conjunction with large ICW sizes. This combination caduee
page load time by up to 80%.

7. REFERENCES

[1] Global web statshttp://www.w3counter.com/
globalstats.php , 2010.

[2] SPDY: An Experimental Protocol for a Faster Web.
http://dev.chromium.org/spdy/
spdy-whitepaper , 2010.

[3] ALLMAN, M. Tcp byte counting re nementSIGCOMM
Comput. Commun. Rev. 28uly 1999), 14-22.

TCP's Initial Window. RFC 3390, IETF, 2002.

[8] ARBORNETWORKS 2009 Internet Observatory Report.
http://www.nanog.org/meetings/nanog47/
presentations/Monday/Labovitz_
ObserveReport_N47_Mon.pdf ,2010.

[9] BALAKRISHNAN, H., RAHUL, H. S.,AND SESHAN, S. An

integrated congestion management architecture for ietern

hosts. InProceedings of SIGCOMM '9@ew York, NY,

USA, 1999), ACM.

CHU, J., DUKKIPATI, N., CHENG, Y., AND MATHIS, M.

Increasing TCP's Initial Windowhttp://tools.ietf.

org/html/draft-ietf-tcpm-initcwnd-01 ,

2011.

DUKKIPATI, N., REFICE, T., CHENG, Y., CHU, J.,

HERBERT, T., AGARWAL, A., JAIN, A., AND SUTIN, N.

An argument for increasing tcp's initial congestion window

SIGCOMM Comput. Commun. Rev. @dne 2010).

FIELDING, R., GETTYS, J., MOGUL, J., RRYSTYK, H.,

MASINTER, L., LEACH, P.,AND BERNERSLEE, T.

Hypertext Transfer Protocol — HTTP/1.1, 1999.

FREEDMAN, M. J., FREUDENTHAL, E.,AND MAZIERES,

D. Democratizing content publication with coral. In

Proceedings of NSDI '0OdBerkeley, CA, USA, 2004),

USENIX Association.

HoOPKINS, A. Optimizing Page Load Timdattp://www.

die.net/musings/page_load_time/ ,2010.

[15] KRISHNAMURTHY, B., AND WANG, J. On network-aware

clustering of web clients. IRroceedings of SIGCOMM '00

(New York, NY, USA, 2000), ACM.

KRISHNAN, R., MADHYASTHA, H. V., SRINIVASAN, S.,

JAIN, S., KRISHNAMURTHY, A., ANDERSON, T., AND

GAO0, J. Moving beyond end-to-end path information to

optimize cdn performance. Proceedings of IMC '0gNew

York, NY, USA, 2009), ACM.

LEIGHTON, T. Improving Performance on the Internet.

Commun. ACM 52February 2009).

[18] NOTTINGHAM, M. Making HTTP Pipelining Usable on the
Open Webhttp://tools.ietf.org/html/
draft-nottingham-http-pipeline-00 ,2010.

[19] NYGREN, E., STARAMAN, R. K., AND SuUN, J. The
akamai network: a platform for high-performance internet
applicationsSIGOPS Oper. Syst. Rev. @ugust 2010).

[20] OLsHEFsKI, D., AND NIEH, J. Understanding the
management of client perceived response time. In
Proceedings of SIGMETRICS '06/Performance [0&w
York, NY, USA, 2006), ACM.

[21] OSTERMANN, S. tcptracehttp://www.tcptrace.
org/ , 2010.

[22] PADMANABHAN , V. N., AND KATZ, R. H. TCP Fast Start:
A Technique For Speeding Up Web TransferslHEE
Globecom(1998).

[23] QIAN, F., GERBER, A., MAO, Z. M., SEN, S.,
SPATSCHECK O.,AND WILLINGER, W. Tcp revisited: a
fresh look at tcp in the wild. IfProceedings of IMC '09
(New York, NY, USA, 2009), ACM.

[24] R. STEWART, E. Stream Control Transmission Protocol.
RFC 4960, IETF, 2007.

[25] SouDERS S. High-performance web sitesSommun. ACM
51 (December 2008).

[10]

[11]

[12]

[13]

[14]

[16]

[17]

	Introduction
	Background And Related Work
	Content Delivery Networks
	Round Trip Times
	Optimizing the Network Stack

	Studying Yahoo! CDN Traffic
	Methodology
	Results
	RTT Characterization
	TCP Connection Characterization
	HTTP Workload Characterization

	Impact Of Different Optimizations on Web Page Load Time
	Initial Congestion Window (ICW)
	Evaluation Using Live Traffic
	Studying Page Load time
	Impact on TCP Fairness
	Discussion

	Appropriate Byte Counting (ABC)
	Evaluation Using Live Traffic
	Studying Page Load time

	HTTP Pipelining

	Discussion and Future Work
	Conclusion

